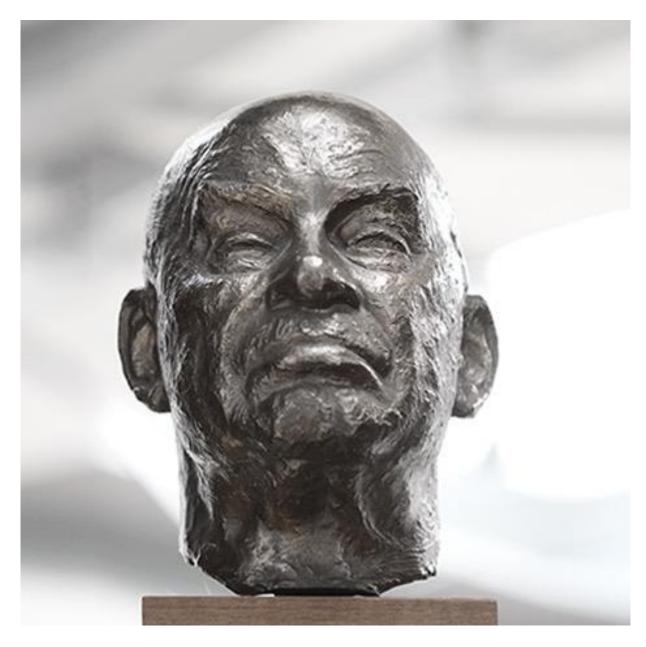
Background of medical bioimpedance analysis

Michael Johannes Maisch, MD

Disclosure

- Financial Relationships:
 - Chief Medical Advisor at seca Hamburg, Germany
- Nonfinancial Relationships:
 - Member of ESPEN (European Society for Clinical Nutrition and Metabolism)
 - Member of DGEM (German Society for Nutritional Medicine)
 - Member of DAG (German Society for Obesity)
 - Member of DGIM (German Society for Internal Medicine)
 - Member of DGHO (German Society for Hematology and Oncology)
 - Member of DGGG (German Society for Obstetrics and Gynecology)
 - Member of IPS (International Prehabilitation Society)



Birth of the world market leader

Business goes into the hands of today's owners, the Vogel family.

The mechanical engineer Frederik Vogel bought the scale factory in 1888, expanded the product portfolio and created the brand name "seca", which he registered in 1897.

Move to today's current location in Hamburg Wandsbek.

BCS

The next generation. Robert Vogel leads the company through the difficult times of the Second World War and soon thereafter starts rebuilding.

Sönke Vogel became the new managing director of seca and introduced a major strategic change to the company.

With the new claim "Precision for Health" and a unique focus to medical application seca sets worldwide standards.

The fourth generation. seca remains market leader. Today the company is run by three managing directors, the brothers Robert and Frederik Vogel, and Thomas Wessels.

Production sites in Germany & China

Exclusive Partner & Distributor network in more than 110 countries

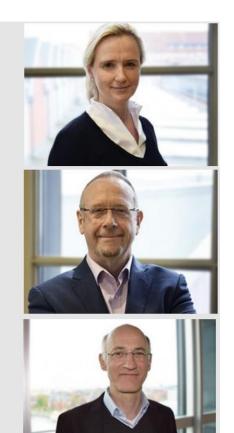
Worldwide market share of more than 60%.

Prof. Dr. Dr. Anja Bosy-Westphal

Hohenheim University, Stuttgart

Nutritional scientist, professor of applied nutrition and dietetics, PhD and MD

Member of the Medical Advisory Board

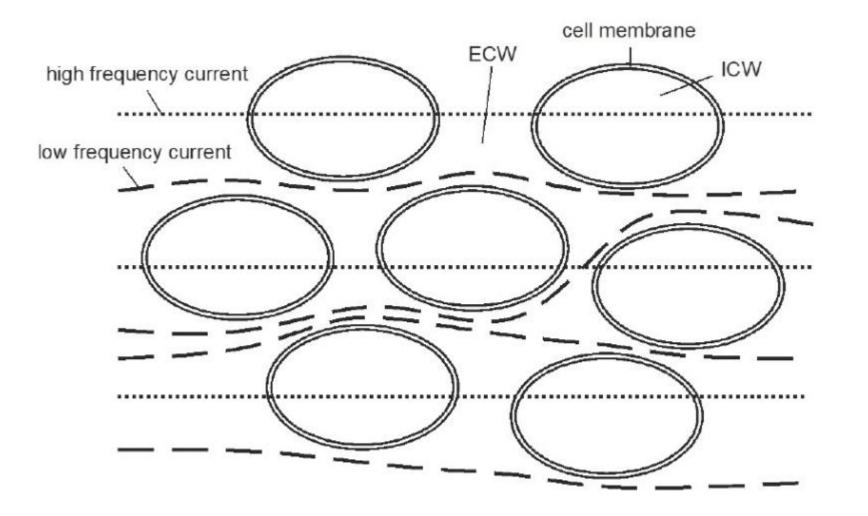

Dr. Stephen Wootton

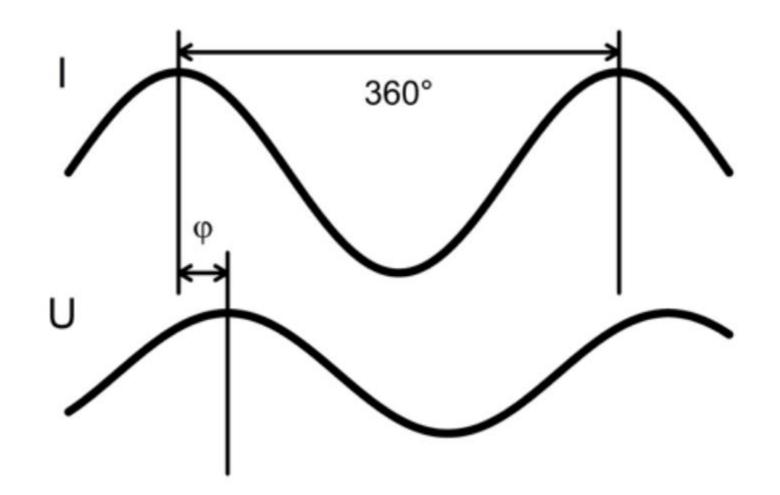
University of Southampton, Southampton Associate Professor in Human Nutrition, BSc (Hons), PhD

Member of the Medical Advisory Board

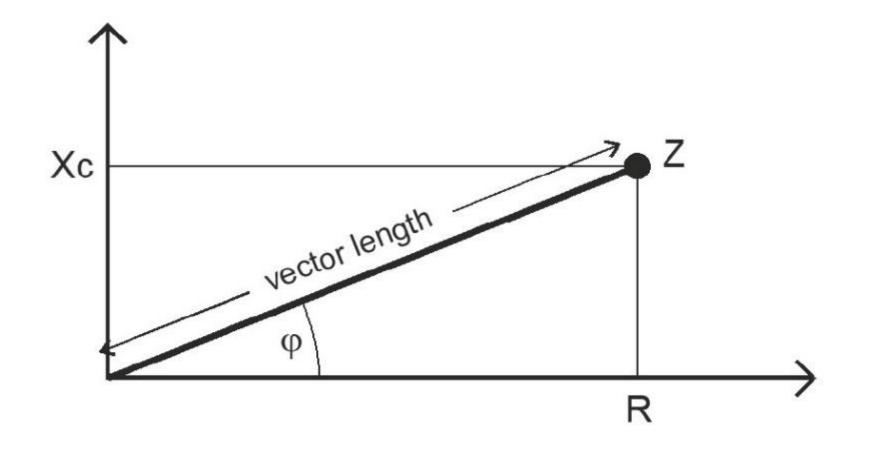
Prof. Dr. Matthias Pirlich

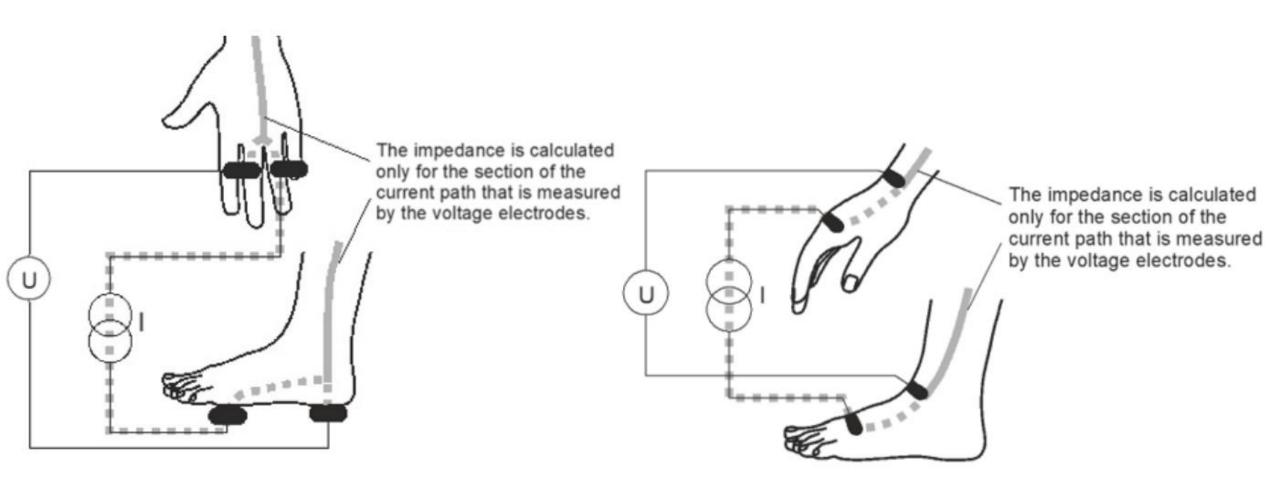
General Secretary for the European Society for Clinical Nutrition and Metabolism (ESPEN) Physician, Gastroenterologist, Endocrinologist, PhD and MD Member of the Medical Advisory Board

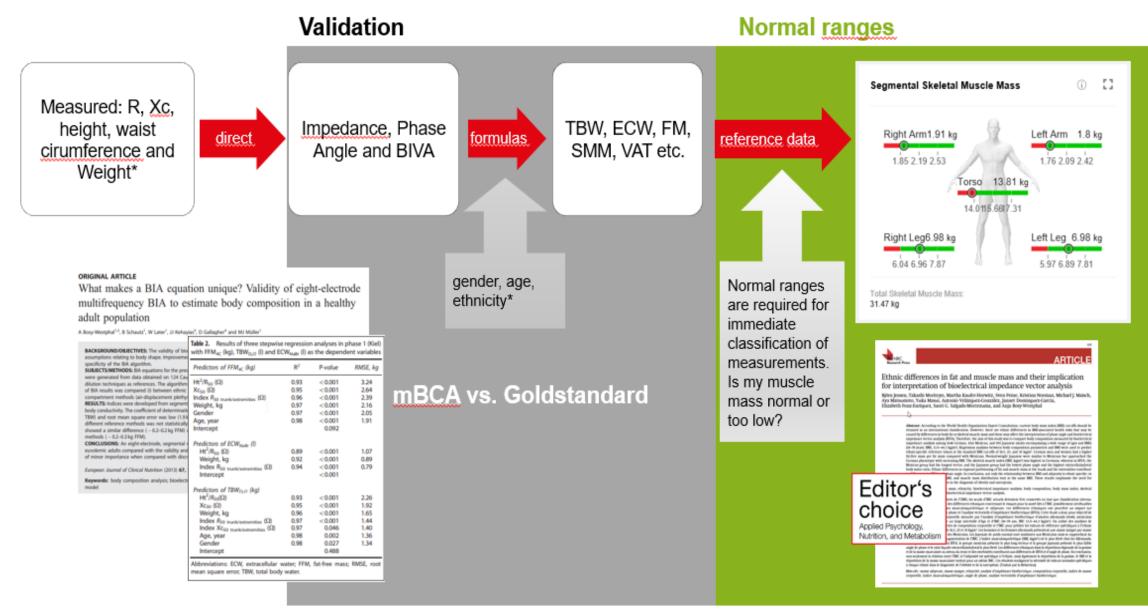

Bioimpedance Analysis

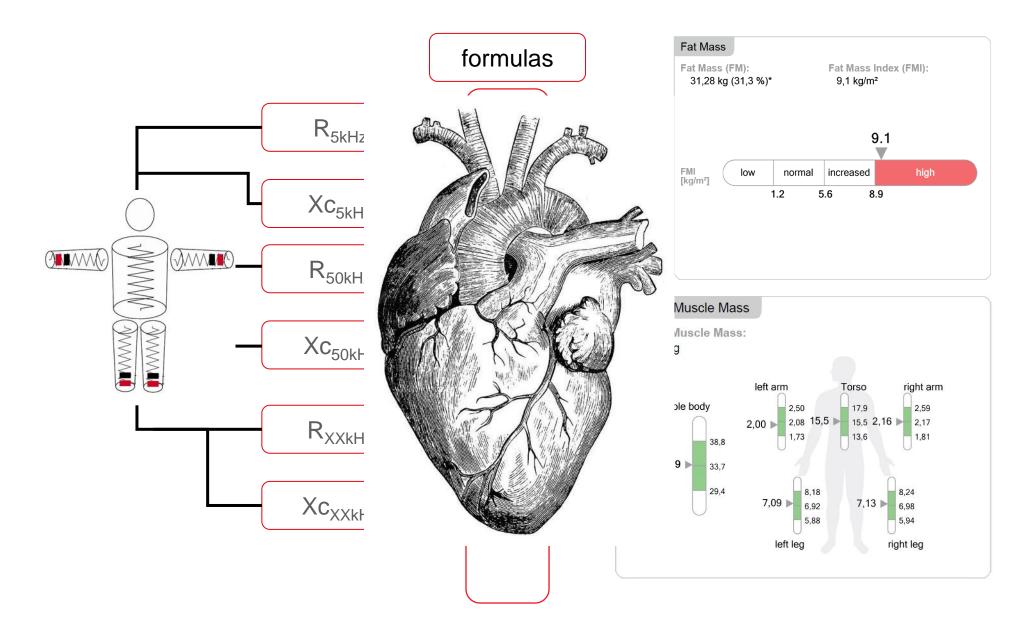


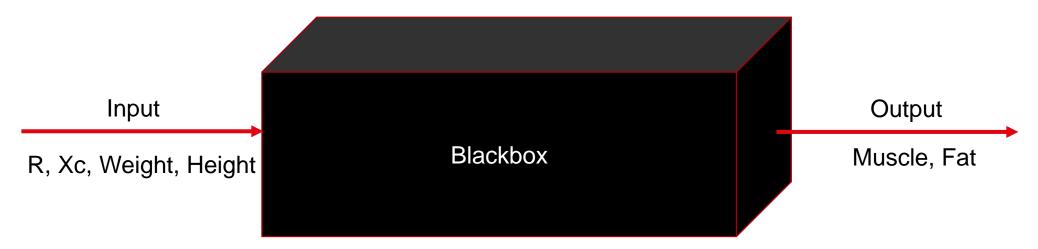
What is bioimpedance analysis?

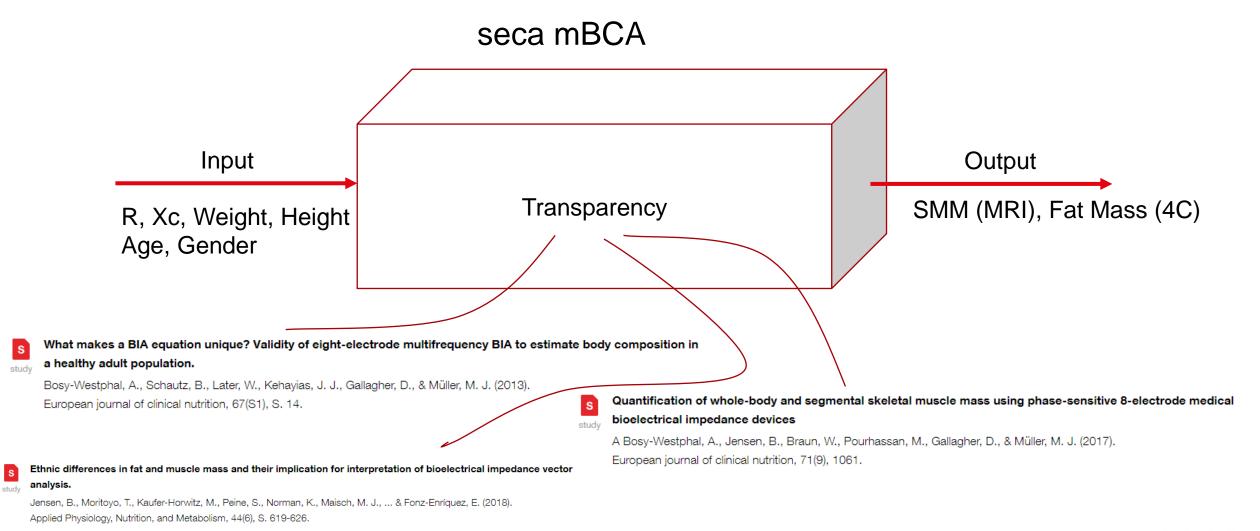









*Weight gives additional information about body compartments that do not or only very badly conduct the electrical current like an isolator, e.g. fat mass. Distribution of body composition changes with gender, age and ethnicity. That's why adding these parameters improves the precision.



Bioimpedance device

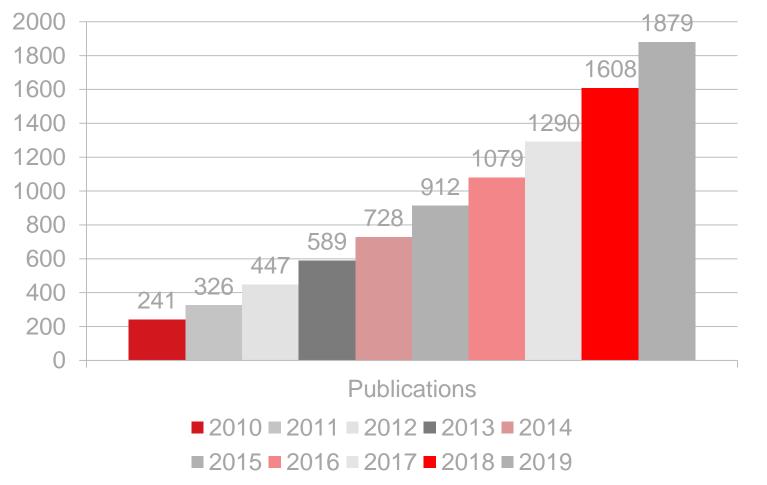
Predictors of FFM_{4C} (kg)	R ²	P-value	RMSE, kg
Ht^2/R_{50} (Ω)	0.93	< 0.001	3.24
Xc ₅₀ (Ω)	0.95	< 0.001	2.64
Index $R_{50 \text{ trunk/extremities}}$ (Ω)	0.96	< 0.001	2.39
Weight, kg	0.97	< 0.001	2.16
Gender	0.97	< 0.001	2.05
Age, year	0.98	< 0.001	1.91
Intercept		0.092	
Predictors of ECW _{NaBr} (I)			
Ht^{2}/R_{50} (Ω)	0.89	< 0.001	1.07
Weight, kg	0.92	< 0.001	0.89
Index $R_{50 \text{ trunk/extremities}}(\Omega)$	0.94	< 0.001	0.79
Intercept		< 0.001	

What makes a BIA equation unique? Validity of eight-electrode multifrequency BIA to estimate body composition in

What makes a BIA equation a healthy adult population.

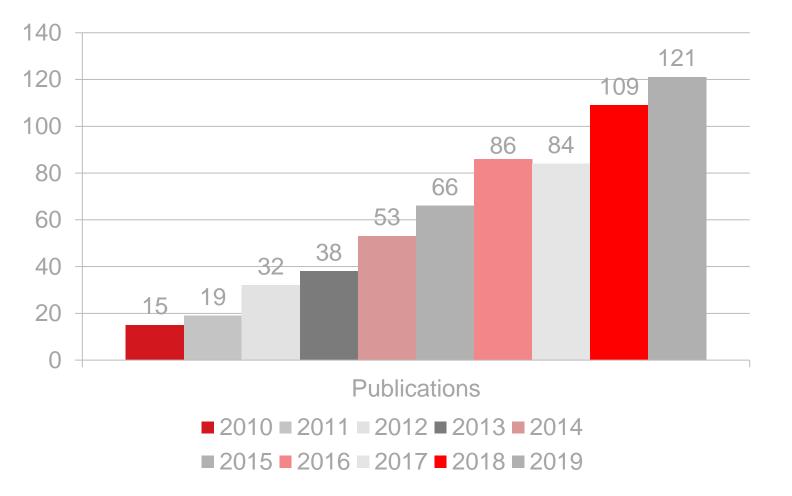
> Bosy-Westphal, A., Schautz, B., Later, W., Kehayias, J. J., Gallagher, D., & Müller, M. J. (2013). European journal of clinical nutrition, 67(S1), S. 14.

18.12.2020



Bioimpedance Analysis and Muscle Mass

Sarcopenia


Search results of "sarcopenia" on pubmed

Sarcopenic obesity

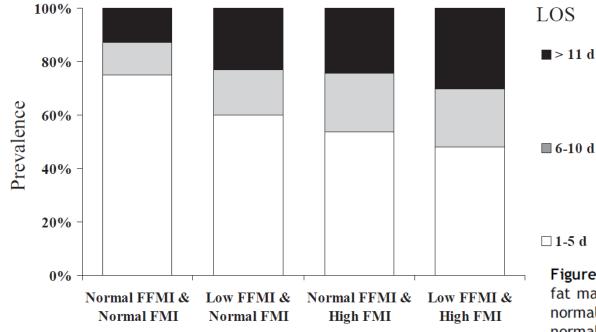
Search results of "sarcopenic obesity" on pubmed

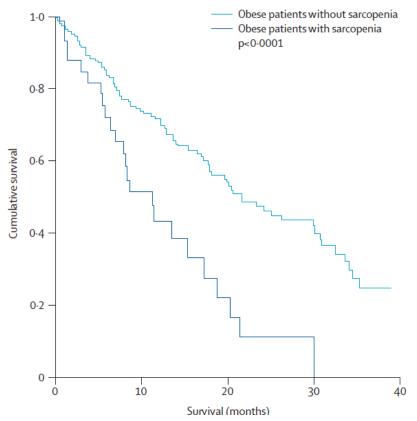
Sarcopenia & sarcopenic obesity 2005

Clin Nutr. 2005 Feb;24(1):133-42.

Increased length of hospital stay in underweight and overweight patients at hospital admission: a controlled population study.

Kyle UG¹, Pirlich M, Lochs H, Schuetz T, Pichard C.



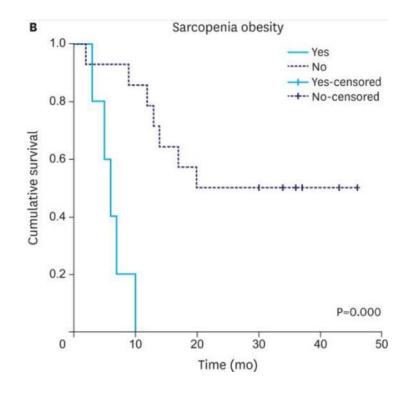

Figure 1 Prevalence (%) of fat-free mass index and body fat mass index at hospital admission. Prevalence (%) of normal FFMI and normal FMI, low FFMI and normal FMI, normal FFMI and high FMI and low FFMI and high FMI in 1707 patients hospitalized for 1–5, 6–10 and \geq 11 days. The proportion of patients hospitalized \geq 11 days was highest in patients with low FFMI and high FMI. χ^2 49.7, degrees of freedom 6, P < 0.001.

Clinical implications of sarcopenia & sarcopenic obesity

Lancet Oncol. 2008 Jul;9(7):629-35. doi: 10.1016/S1470-2045(08)70153-0. Epub 2008 Jun 6.

Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study.

Prado CM¹, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, Baracos VE.



Clinical implications of sarcopenia & sarcopenic obesity

J Gastric Cancer. 2017 Mar;17(1):74-87. doi: 10.5230/jgc.2017.17.e8. Epub 2017 Mar 14.

Body Composition as a Prognostic Factor of Neoadjuvant Chemotherapy Toxicity and Outcome in Patients with Locally Advanced Gastric Cancer.

Palmela C¹, Velho S², Agostinho L³, Branco E⁴, Santos M⁵, Santos MP¹, Oliveira MH⁶, Strecht J³, Maio R⁵, Cravo M¹, Baracos VE⁷.

Clin Nutr. 2015 Jun;34(3):335-40. doi: 10.1016/j.clnu.2015.03.001. Epub 2015 Mar 9.

Diagnostic criteria for malnutrition - An ESPEN Consensus Statement.

Cederholm T¹, Bosaeus I², Barazzoni R³, Bau A⁴, Var Sossum A⁵, Klek S⁶, Muscaritoli M⁷, Nyulasi I⁸, Ockenga J⁹, Schneider SM¹⁰, de van der Schueren MA¹¹, Singer P¹²,

Clin Nutr. 2017 Feb;36(1):49-64. doi: 10.1016/j.clnu.2016.09. 4. E 16 Sep 14. h^{2}

ESPEN guidelines on definitions and terminology of clinical nutrition.

Cederholm T¹, Barazzoni R², Austin P³, Ballmer P⁴, Biolo G⁵, Bischoff SC⁶ Con the C⁷, Correia I⁸, Higashiguchi T⁹, Holst M¹⁰, Jensen GL¹¹, Malone A¹², Muscaritoli M¹³, Nyulasi I¹⁴, Pirlich M¹⁵, Rothenberg E¹⁶, Schindler K¹⁷, Schneder M¹⁷, devan der Schueren MA¹⁹, Sieber C²⁰, Valentini L²¹, Yu JC²², Van Gossum A²³, Singer P²⁴.

Clin Nutr. 2019 Feb;38(1):1-9. doi: 10.1016/j.clnu.2018.08.002. Epub 2018 Sep 3.

GLIM criteria for the diagnosis of malnutrition - A consensus report from the global clinical nutrition community.

Cederholm T¹, Jensen GL², Correia MITD³, Gonzalez MC⁴, Fukushima R⁵, Higashiguchi T⁶, Baptista G⁷, Barazzoni R⁸, Blaauw R⁹, Coats A¹⁰, Crivelli A¹¹ Evans DC¹², Gramlich L¹³, Fuchs-Tarlovsky V¹⁴, Keller H¹⁵, Llido L¹⁶, Malone A¹⁷, Mogensen KM¹⁸, Morley JE¹⁹, Muscaritoli M²⁰, Nyulasi I²¹, Pirlich M²², Pisprasert V²³, de van der Schueren MAE²⁴, Siltharm S²⁵, Singer P²⁶, Tappenden K²⁷, Velasco N²⁸, Waitzberg D²⁹, Yamwong P³⁰, Yu J³¹, Van Gossum A³², Compher C³³: GLIM Core Leadership Committee; GLIM Working Group.

J Am Med Dir Assoc. 2014 Feb;15(2):95-101. doi: 10.1016/j.jamda.2013.11.025.

Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia.

Chen LK¹, Liu LK², Woo J³, Assantachai P⁴, Auyeung TW³, Bahyah KS⁵, Chou MY⁶, Chen LY², Hsu PS⁷, Krairit O⁸, Lee JS³, Lee WJ⁹, Lee Y¹⁰, Liang CK⁶, Limpawattana P¹¹, Lin CS¹², Peng LN², Satake S¹³, Suzuki T¹⁴, Won CW¹⁵, Wu CH¹⁶, Wu SN¹⁷, Zhang T¹⁷, Zeng P¹⁷, Akishita M¹⁸, Arai H¹⁹.

J Am Med Dir Assoc. 2016 Aug 1;17(8):767.e1-7. doi: 10.1016/j.jamda.2016.05.016. Epub 2016 Jun 29.

Recent Advances in Sarcopenia Research in Asia: 2016 Update From the Asian Working Group for Sarcopenia.

Chen LK¹, Lee WJ², Peng LN³, Liu LK³, Arai H⁴, Akishita M⁵; Asian Working Group for Sarcopenia.

J Am Med Dir Assoc. 2011 May;12(4):249-56. doi: 10.1016/j.jamda.2011.01.003. Epub 2011 Mar 4.

Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia.

Fielding RA¹, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, De Meynard C, Donini L, Harris T, Kannt A, Keime Guibert F, Onder G, Papanicolaou D, Rolland Y, Rooks D, Sieber C, Souhami E, Verlaan S, Zamboni M.

Age Ageing, 2010 Jul;39(4):412-23. doi: 10.1093/ageing/afq034. Epub 2010 Apr 13.

Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People.

Cruz-Jentoft AJ¹, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M; European Working Group on Sarcopenia in Older People.

Age Ageing, 2019 Jan 1;48(1):16-31. doi: 10.1093/ageing/afy169.

Sarcopenia: revised European consensus on definition and diagnosis.

<u>Cruz-Jentoft AJ</u>¹, <u>Bahat G</u>², <u>Bauer J</u>³, <u>Boirie Y</u>⁴, <u>Bruyère O</u>⁵, <u>Cederholm T</u>⁶, <u>Cooper C</u>⁷, <u>Landi F</u>⁸, <u>Rolland Y</u>⁹, <u>Sayer AA</u>¹⁰, <u>Schneider SM</u>¹¹, <u>Sieber CC</u>¹², <u>Topinkova E</u>¹³, <u>Vandewoude M</u>¹⁴, <u>Visser M</u>¹⁵, <u>Zamboni M</u>¹⁶; <u>Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2)</u>, and the Extended Group for EWGSOP2.

18.12.2020

	a. Primärliteratur AWGOS		🔊 8) Espen Consensus Statement	
	a. Primärliteratur AWGOS2		8b) Fat-free mass index and fat mass index percentiles	
	b. Primärliteratur IWGS		🔒 17) Recent Advances in Sarcopenia Research in Asia - 2016 Update From the Asian Working Grou	
	d. Primärliteratur EWGOSP		🔊 17a) Asian Workinggroup on Sarcopenia	
	e. Primärliteratur GLIM		剧 17b) Epidemiology of sarcopenia in elderly Japanese	
	🔊 a. AWGOS Sarcopenia in Asia . consensus report of the Asian Working Group for Sarcopenia.		I7c) Association between sarcopenia and higher-level functional capacity in daily living in comm	
	🔒 a. AWGOS2 Recent Advances in Sarcopenia Research in Asia - 2016 Update From the Asian Work	king Group	for (🙆 20) Frailty in older adults - evidence for a phenotype.	
	a. What is the best adjustment of appendicular lean mass for predicting mortality or disability ar	mong Japa	nese 剧 21) Screening for undernutrition in geriatric practice - developing the short-form mini-nutritional	
	🔒 b. Sarcopenia - an undiagnosed condition in older adults. International working group on sarco		24 b) = 20 b) Appendicular skeletal muscle mass - effects of age, gender, and ethnicity.	
	c. International Clinical Practice Guidelines for Sarcopenia (ICFSR) Screening, Diagnosis and Man		24) = 20) Epidemiology of sarcopenia among the elderly in New Mexico.	
			nate 🙈 25) = 21) Agreement and Predictive Validity Using Less-Conservative Foundation for the National	
	d. EWGSOP Sarcopenia - European consensus on definition and diagnosis			
	🙆 d. EWGSOP2 Sarcopenia -revised European consensus on definition and diagnosis	இவ	Effects of exercise and amino acid supplementation on body composition and physical function in community-dw	
	📕 e. GLIM 2018	_	Association between sarcopenia and higher-level functional capacity in daily living in community-dwelling elderly	
	_	_	b) Association between succeptional and higher revendence on a capacity in daily inving in community dweining clach	
	🚨 3) The FNIH sarcopenia project - rationale, study description, conference recommendations, i	_	 The loss of skeletal muscle strength, mass, and quality in older adults -the health, aging and body composition stop 	
	🚨 8) Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equ	🔒 16) Assoc) Association between body composition and pulmonary function in elderly people - the Korean Longitudinal Stud	
🔒 12	12) SARC-F A Simple Questionnaire to Rapidly Diagnose Sarcopenia) Prevalence of Sarcopenia Estimated Using a Bioelectrical Impedance Analysis Prediction Equation in Community-	
	🚨 74) Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free	_	-22) Estimation of skeletal muscle mass by bioelectrical impedance analysis.	
٦	👃 125) Total and appendicular lean mass reference ranges for Australian men and women	_) Comparison of DEXA-derived body fat measurement to two race-specific bioelectrical impedance equations in he	
		e 40	b comparison of DEXA-derived body fat measurement to two face-specific bioelectrical impedance equations in ne	
	A 14) Epidemiology_of_sarcopenia_in_elderly_Japanese	🔊 5) Epide	miology of sarcopenia among the elderly in New Mexico.	
	ID) Prevalence of sarcopenia in community-dwelling Japanese older adults.	A 18) Sarcopenia - alternative definitions and associations with		
	15-15)Difficulties with physical function associated with obesity, sarcopenia, and sarcopen	_	relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment	
	A 16) Development of a simple screening test for sarcopenia in older adults			

- Parcopenia in elderly men and women the Rancho Bernardo study.
- 98) (Rosetta) Appendicular skeletal muscle mass effects of age, gender, and ethnicity.
- l00) Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women.

I6-9) Association between muscle mass and disability in performing instrumental activitie.

[8] 18) Incidence and predictors of sarcopenia onset in community-dwelling elderly Japanese

Review

Reference Values for Skeletal Muscle Mass – Current Concepts and Methodological Considerations

Carina O. Walowski¹, Wiebke Braun¹, Michael J. Maisch², Björn Jensen², Sven Peine³, Kristina Norman^{4,5}, Manfred J. Müller¹ and Anja Bosy-Westphal^{1,*}

GLIM

Table 2

Examples of recommended thresholds for reduced muscle mass.

	Males	Females
Appendicular Skeletal Muscle Index (ASMI, kg/m ²) [15]	<7.26	<5.25
ASMI, kg/m^2 [24] ^a	<7	<6 EWGSOP
ASMI, kg/m ² [17] ^b		
DXA	<7	
BIA	<7 <7	<5.4 <5.7 AWGS
Fat free mass index (FFMI, kg/m ²) [8]	<17	<15 ESPEN
Appendicular lean mass (ALM, kg) [25]	<21.4	<14.1
Appendicular lean mass adjusted for BMI = ALM/BMI [26]	<0.725	<0.591

DXA = dual energy x-ray absorptiometry, BIA = bioelectrical impedance analysis. BMI = body mass index.

^a Recommendations from European Working Group on Sarcopenia in Older People 2 (EWGSOP2); personal communication Alfonso Cruz- Jentoft.

^b Recommendations from Asian Working Group for Sarcopenia (AWGS) for Asians.

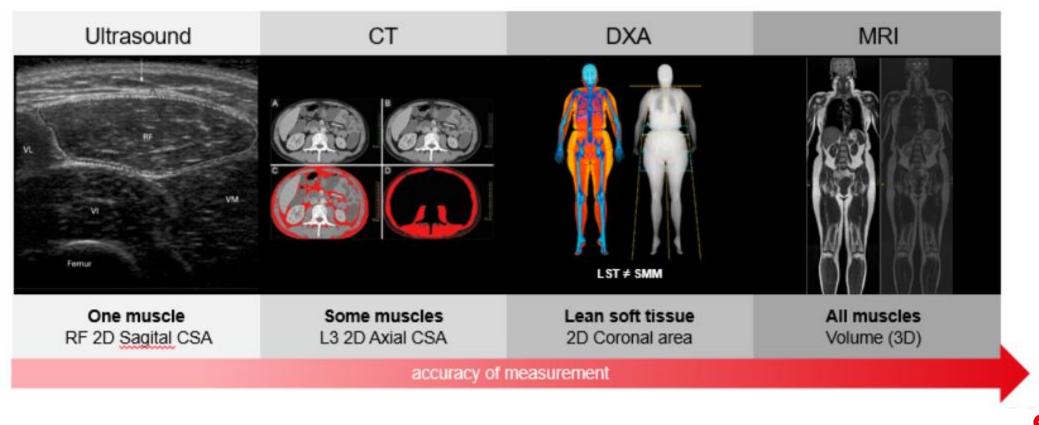
ASMI

Appendicular Skeletal Muscle Index

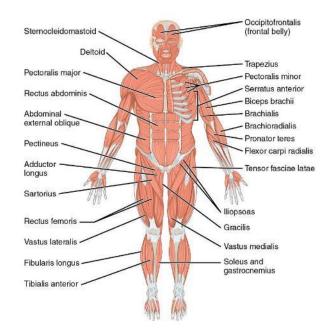
36

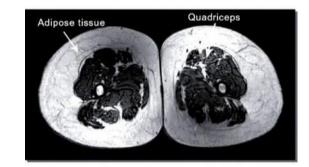
FFMI

Fat-Free Mass Index

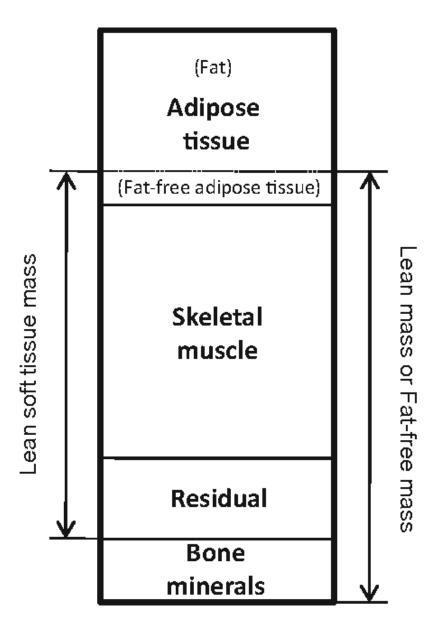

ALM

Appendicular Lean Mass


Muscle mass accuracy compared to full-body MRI

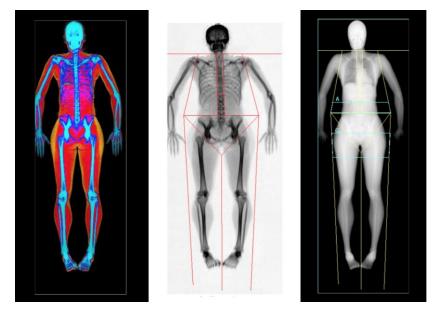


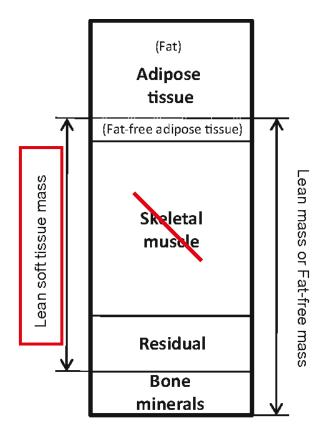
Whole body MRI

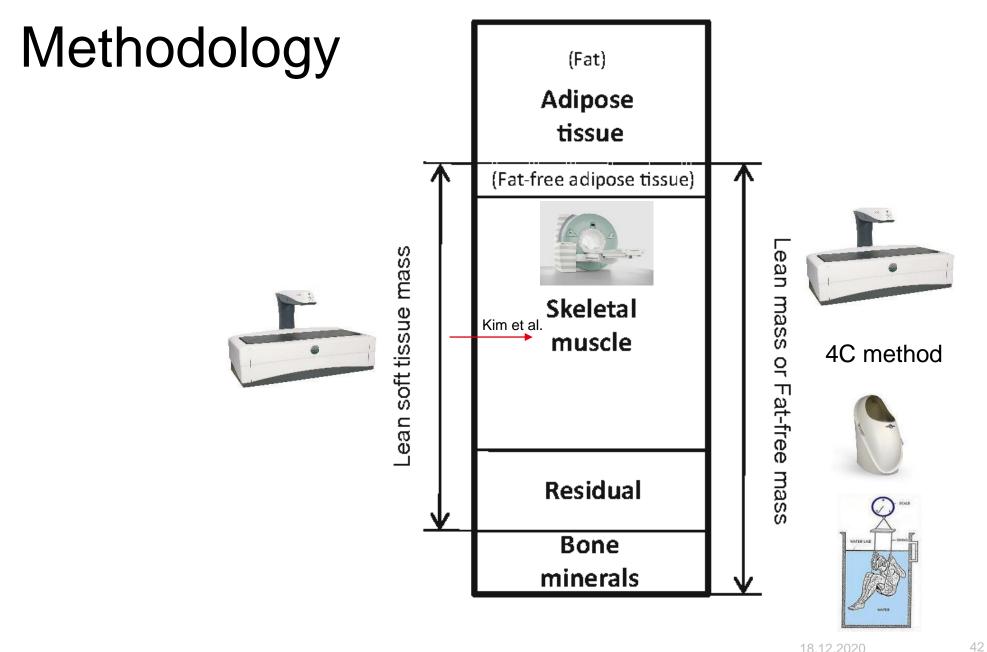


Whole body muscle mass

18.12.2020






Fat-Free Mass Appendicular Lean Soft Tissue *Appendicular Skeletal Mass Index*

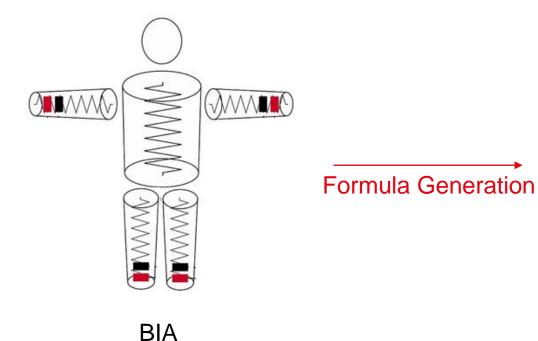
Appendicular Skeletal Muscle Index (ASMI) = $\frac{Appendicular Lean Soft Tissue [kg]}{Height^2[m^2]}$

81M BSA = 1.59 m² SMI = 31.8 cm²/m²

65M BSA = 1.59 m² SMI = 54.4 cm²/m²

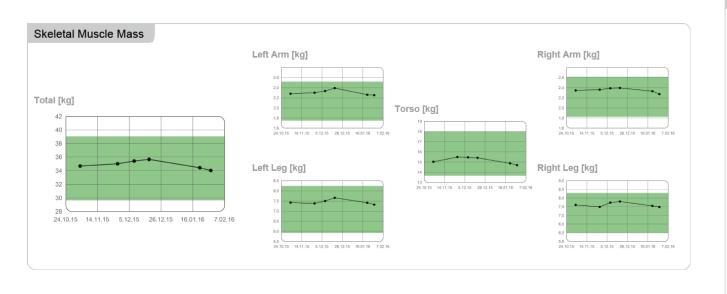
43

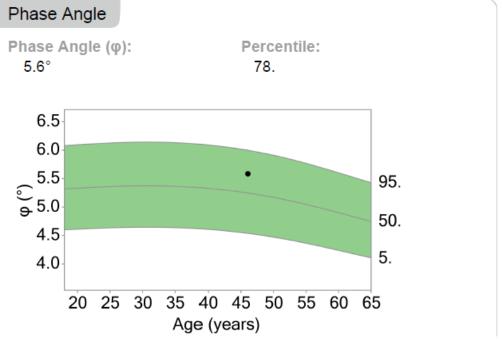
СТ


Muscle Mass Cross sectional area L3 (CSA)

 $SMI = \frac{CSA [cm^2]}{Height^2 [m^2]}$

Psoas thickness (CT), quadriceps thickness (US)


Methodology – Bioimpedance Analysis (BIA)



Skeletal Muscle Mass (MRI) Skeletal Muscle Mass (DXA → Formula) Fat-Free/Fat Mass (4C) Fat-Free/Fat Mass (DXA) Fat-Free/Fat Mass (ADP or UWW) Appendicular Skeletal Muscle Index (DXA)

Methodology – Bioimpedance Analysis (BIA)

Muscle Quality

Muscle Quantity

Conclusion

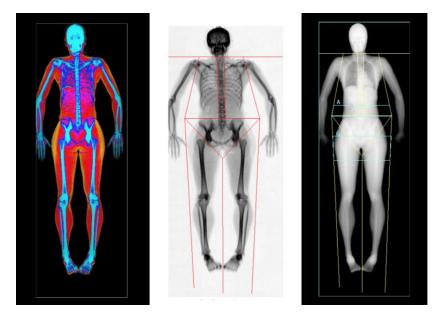
MDPI

Review Reference Values for Skeletal Muscle Mass – Current Concepts and Methodological Considerations

Carina O. Walowski¹, Wiebke Braun¹, Michael J. Maisch², Björn Jensen², Sven Peine³, Kristina Norman^{4,5}, Manfred J. Müller¹ and Anja Bosy-Westphal^{1,*}

"In summary, published reference values for SM differ widely dependent on the outcome parameter and reference population. Results should consider the limitation of all proxies for total SM with respect to application in individual cases as well as for measurement of changes in SM.

The adverse effects of obesity on muscle quality and function may lead to an underestimation of sarcopenia in obesity and therefore requires normalization of SM for FM."



Bioimpedance Analysis and Fat Mass

DXA

Fat-Free Mass **Fat Mass** Appendicular Lean Soft Tissue *Appendicular Skeletal Mass Index*

Fat mass accuracy compared to 4-compartment model

Fat-Free Mass Fat Mass

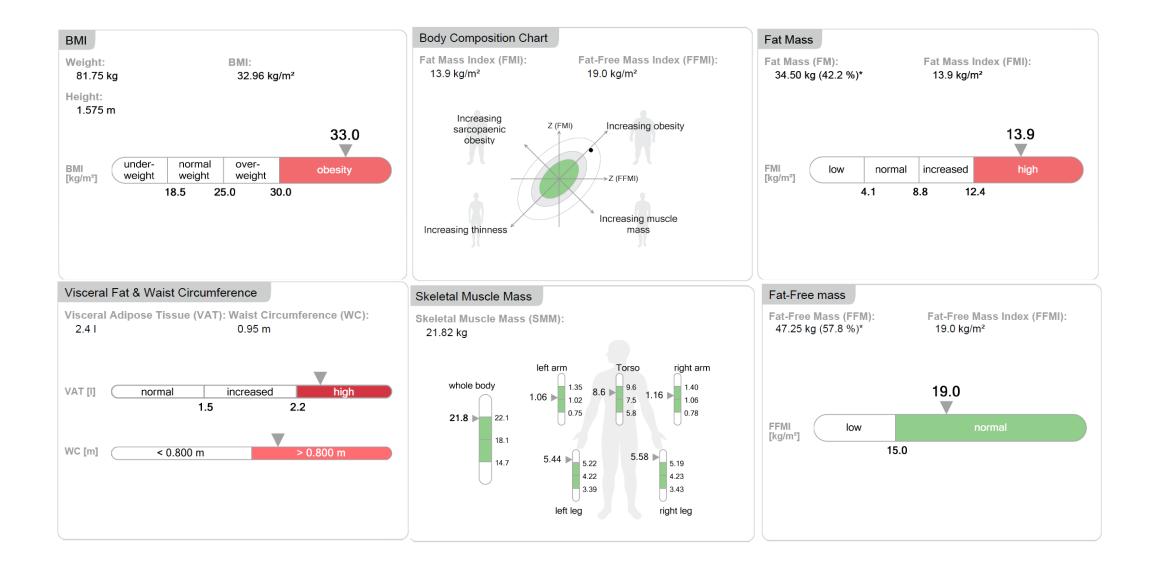
18.12.2020

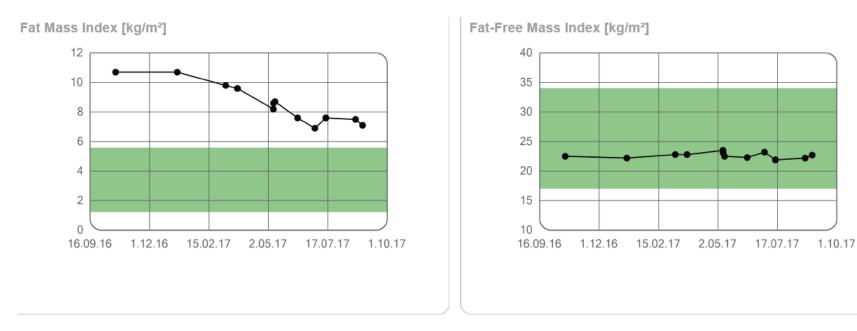
Bosy-Westphal A, Mueller MJ. Assessment of fat and lean by quantitative magnetic resonance: a future technology of body composition research. Curr Opin Clin Nutr Metab Care 2015.

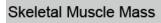
Santos DA, Silva AM, Matias CN, Fields DA, Heymsfield SB, Sardinha LB. Accuracy of DXA in estimating body composition changes in elite athletes using a 4-compartment model as the reference method. Nutr & Metab 2010 7:22.

Schoeller DA, Tylavsky FA, Baer DJ, Chumlea WC, Earthman CP, Fuerst T, Harris TB, Heymsfield SB, Horlick M, Lohman TG, Lukaski HC, Shepherd J, Siervogel RM, Borrud LG. *QDR 4500A dual-energy X-ray absorptiometer underestimates fat mass in comparison with criterion methods in adults.* Am J Clin Nutr 2005;81:1018–25.

Tylavsky FA, Lohman TG , Blunt BA, Schoeller DA, Fuerst T, Cauley JA, Nevitt MC, Visser M, Harris TB. *QDR* 4500A DXA overestimates fat-free mass compared with criterion methods. J Appl Physiol 94: 959–965, 2003.


Deurenberg-Yap M, Deurenberg P. Validity of deuterium oxide dilution for the measurement of body fat among Singaporeans. Food and Nutrition Bulletin 23 (3): 34-37, 2002

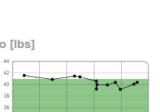

Van der Ploeg GE, Withers RT, Laforgia J. Percent body fat via DEXA: comparison with a four-compartment model. J Appl Physiol 94: 499–506, 2003;



Bioimpedance Analysis Parameters

95

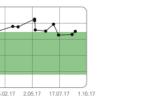
90 85 80


75

70 65 60

16.09.16 1.12.16 15.02.17 2.05.17 17.07.17 1.10.17

Right Leg [lbs]


3.5 16.09.16 1.12.16 15.02.17 2.05.17 17.07.17 1.10.17

Right Arm [lbs]

5.

5)

4.0

53

Total [lbs] 100

Precision for health

Contact

Melvin NG Regional Sales Manager

seca

seca Asia Pacific SDN BHD 50470 Kuala Lumpur, Malaysia

melvin.ng@seca.com